点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:彩神88-彩神88
首页>文化频道>要闻>正文

彩神88-彩神88

来源:彩神882024-02-05 17:48

  

彩神88

最强寒潮来袭,一键get防寒保暖知识!******

  今年入冬以来,最强寒潮天气来袭。

  27日寒潮天气已在西北地区“露头”,新疆北部和西部、内蒙古西部、甘肃中西部等地出现大风降温天气,有23个台站的最大风速突破或达到历史极值,部分地区降温幅度达12℃至20℃。

  28至30日,我国大部分地区气温继续断崖式下跌,部分地区降温可达18℃以上。

最强寒潮来袭,一键get防寒保暖知识!

图源:中央气象台

  “这次寒潮过程最显著的特点就是降温剧烈,全国大部气温将会由前期明显偏高转为明显偏低。”中央气象台首席预报员张芳华说。

  寒潮是什么?

  寒潮是指来自高纬度地区的寒冷空气,在特定的天气形势下迅速加强并向中低纬度地区侵入,造成沿途地区剧烈降温、大风和雨雪天气。这种冷空气南侵达到一定标准的就称为寒潮。寒潮是一种大范围的天气过程,在全国各地都可能发生,可以引发霜冻、冻害等多种自然灾害。

图源:摄图网

  中华人民共和国国家标准《冷空气等级》(GB/T20484 -2006)中寒潮的定义是:某一地区冷空气过境后,气温24h内下降8℃以上,且最低气温下降到4℃以下;或48h内气温下降10℃以上,且最低气温下降到4℃以下;或72h内气温连续下降12℃以上,并且最低气温在4℃以下。

  寒潮多发生在秋末、冬季和初春时节。统计显示,近三十年,也就是从1991年至2020年,我国平均每年发生寒潮5.4次,其中两到三次为全国性寒潮。1991年以来,寒潮出现次数最多的年份是2021年,共11次;出现寒潮次数最少的是2017年,仅有2次。

  寒潮来袭、气温骤降,容易导致哪些疾病?

  心脑血管疾病。突然降温,会刺激人体交感神经兴奋,造成血管收缩、血液循环的外周阻力增加、血压升高、心肌耗氧量增多,引起血压飙升和心肌缺血加重,最终导致脑出血和心绞痛发作。天气寒冷还会使血液变得黏稠、流速减缓,导致血栓形成,最终造成脑血管堵塞或心肌梗塞。

  脑卒中(中风)。脑卒中发病率与季节有明显的联系,一般认为冬季最高,尤其是在温度骤降时。气温骤降,昼夜温差悬殊,低气压、高湿度,易使得血压骤然上升,卒中意外也接踵而至。

  呼吸道传染病。寒冷常伴随干燥、湿度低,容易使病原微生物悬浮于空气中,增加了病原微生物与人的接触机会;寒冷的空气会降低呼吸道的免疫功能,抑制免疫细胞活性,减少气道纤毛功能。

  骨折。气温低,肌肉和韧带柔韧性较差,对关节的保护力度减弱。道路冰冻很容易使人失去平衡而摔倒,稍有不慎就会造成关节损伤及骨折。尤其是老年人和绝经后女性,多伴有骨质疏松或骨量减少,相较年轻人更容易摔倒,也更容易骨折。

最强寒潮来袭,一键get防寒保暖知识!

  如何防寒保暖,降低患病可能性

  各位小伙伴儿们!世界上没有“金钟罩”“铁布衫”,请亲爱的你们,尤其是老人、小孩以及患有呼吸道疾病、心血管疾病等慢性病的患者,降温期间做好个人防护,提高自身抵抗力。

  一定注意保暖!雨雪天外出一定要注意保暖,尤其要保护好头部、手部和脚部,千万别忘了戴帽子、围巾和手套。有心脑血管疾病的人,出行时最好要随身携带速效救心丸、硝酸甘油等急救药物。当出现胸痛、呼吸困难、肢体麻木、活动失灵等症状时,应及时拨打120,以免错过最佳治疗时间。

  注意房间通风。从减少病原菌单位浓度的角度,要定期通风,如在出门或离开房间时,可以视情况打开门窗。如果长时间待在室内,可以交替打开不同房间的门窗。此外,还需增加室内湿度,特别是在开空调时,可使用湿化器,保持室内湿度30-40%之间。

  寒冷天气尽量减少出行。如果有事必须外出,不要穿易滑的塑料底鞋。在室外锻炼时,要尽量避开有水、结冰的路面,要充分进行准备活动,伸展肢体,进行“预热”。

  适量增加摄入产热高的食物。如羊肉、牛肉、鸡肉、红枣等,这些食品中富含蛋白质及脂肪,对于身体虚寒、阳气不足者特别有益。还应多吃柚子、苹果等生津类水果,适量增加辛辣御寒食品,帮助祛寒和增进食欲,促进血液循环,增强御寒能力。

  资料来源:科普北京、中央气象台、中国疾控中心、健康时报、健康杭州

  整理:刘雪洁 蔡琳

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • PPP到底是什么?浅谈PPP与其神奇的“祖师爷”

  • 大众新迈腾曝光小失望

独家策划

推荐阅读
彩神88精彩回顾|东风悦达起亚寄望全新KX5重振中国市场
2023-12-08
彩神88 2块钱1斤,晚上吃一点,百病远离你,血管洗得干干净净!
2024-02-12
彩神88中国微波光子雷达成像达国际领先 决定未来战场优势
2023-07-30
彩神88最美逆行!行李箱滚落砸向老人 小伙狂奔截住
2023-07-27
彩神88早安我的少年:有温度的生活伴侣
2023-08-24
彩神88学者:城区人口降低不代表城市活力下降
2023-12-15
彩神88续航超320km 奥迪e-tron Sportback假想图曝光
2023-07-25
彩神88俄乌领导人针锋相对隔空喊话 各自为对话开条件
2024-01-15
彩神88海南通报"医院涉售假宫颈癌疫苗":查实后顶格罚款
2023-09-05
彩神88 孟加拉海军采购的两艘中国护卫舰抵达目的地 结构接近056
2023-07-18
彩神88哈登赛后谈论判罚:我只是想得到一个公平的机会
2024-05-30
彩神88靠黑历史频上热搜的这位美眉,素质真的有点差哦
2023-10-05
彩神88四闺蜜首秀小S最显老?
2023-12-18
彩神88号称规模超700亿的集团崩了 80后老板被抓
2023-07-20
彩神88公安部通报打击春节档电影侵权盗版 吴京等出席
2024-04-01
彩神88吴奇隆当爸微博报喜:母子平安
2023-10-07
彩神88 百亿营收国企广物控股将和商贸控股合并,曾被巡视组点名整改
2023-11-21
彩神88国产科幻片缘何成为春节档爆款
2024-01-17
彩神88刘诗诗顺利产子 吴奇隆微博官宣报喜
2023-08-02
彩神88毛泽东在上海收获革命“第一桶金”
2024-01-10
彩神88该如何读懂2-8岁孩子的心理
2023-09-30
彩神882.0T带四驱,这奥迪又降2万,人称平价小A7,终于火了!
2024-05-10
彩神88消息人士:FAA去年发现737MAX系统相关问题
2023-10-13
彩神8890后存款为0的真实原因
2024-05-29
加载更多
彩神88地图